Math 2550 - Homework \# 8
 Eigenvalues and Eigenvectors

1. For each matrix A do the following: (i) Find the eigenvalues of A, (ii) Find a basis for each eigenspace $E_{\lambda}(A)$, (iii) For each eigenvalue, compute it's algebraic and geometric multiplicity.
(a) $A=\left(\begin{array}{cc}3 & 0 \\ 8 & -1\end{array}\right)$
(b) $A=\left(\begin{array}{cc}10 & -9 \\ 4 & -2\end{array}\right)$
(c) $A=\left(\begin{array}{ll}5 & 0 \\ 0 & 5\end{array}\right)$
(d) $A=\left(\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 0\end{array}\right)$
(e) $A=\left(\begin{array}{lll}4 & 0 & 1 \\ 2 & 3 & 2 \\ 1 & 0 & 4\end{array}\right)$
(f) $A=\left(\begin{array}{ccc}4 & 0 & 1 \\ -2 & 1 & 0 \\ -2 & 0 & 1\end{array}\right)$
2. Let A be an $n \times n$ matrix. Suppose that λ is an eigenvalue of A with corresponding eigenvector \vec{x}. Find a formula for $A^{n} \vec{x}$ for any $n=1,2,3,4, \ldots$.
3. Let A be an $n \times n$ matrix and λ be an eigenvalue of A. Prove that $E_{\lambda}(A)$ is a subspace of \mathbb{R}^{n}.
